Healthcare, Privacy, Big Data and Cybercrime: which one is the weakest link?

Marin Mrcelea

Igor Vuletic

Follow this and additional works at: https://lawecommons.luc.edu/annals

Part of the Health Law and Policy Commons

Recommended Citation
Marin Mrcelea & Igor Vuletic Healthcare, Privacy, Big Data and Cybercrime: which one is the weakest link?, 27 Annals Health L. 257 (2018).
Available at: https://lawecommons.luc.edu/annals/vol27/iss2/9

This Article is brought to you for free and open access by LAW eCommons. It has been accepted for inclusion in Annals of Health Law by an authorized editor of LAW eCommons. For more information, please contact law-library@luc.edu.
Healthcare, Privacy, Big Data and Cybercrime: which one is the weakest link?

Marin Mrčela

Igor Vuletić

INTRODUCTION

Today, cybercrime poses one of the largest risks in every sector that utilizes computer data-based operating systems. While computerization certainly improved the quality of service, it simultaneously made confidential information accessible for illegal operations from anywhere in the world. One might say that the computer era revolutionized the ordinary nature of crimes, allowing them to transcend from the physical world, to the virtual or immaterial. The healthcare sector broadly accepted the many advantages offered by the digitalization process, with adoption accelerating during the last decade. In the new digitalized environment, it is unquestionable that big

2. David F. Linowes, Your Personal Information Has Gone Public, 2D COMPUTERIZATION AND CONTROVERSY 637 (Kling, 1996), https://www.sciencedirect.com/science?_ob=PdfExcerptURL&_imagekey=3-s2.0-B9780124150409501330-main.pdf&_preview=true&_key=b9780124150409501330&cdi=283111&_origin=PublicationURL&_zone=rsl_list_item&_fmt=abst&ecd=3-s2.0-B9780124150409501330&isbn=9780124150409&use=m572708&md5=c424e244f74df0e04e1b04d7ddd41d.ie=/excerpt.pdf%20target=
data and the “cloud” enables hospitals to provide the best possible care for patients.\footnote{Chawla & Davis, supra note 4, at 661.}

However, while other sectors have used the cloud for many years, the healthcare sector is still relatively new in this sensitive business.\footnote{Id.} For example, financial and commercial entities have been the targets of cyber-attacks for many years and in response, developed the skills necessary to defend and protect their consumers.\footnote{Monica Brink, Financial services and the great cloud conundrum, INFORMATION-AGE (Jan. 26, 2017) http://www.information-age.com/financial-services-great-cloud-conundrum-123464162/.} Accordingly, the financial and commercial sectors experienced both the benefits and risks of digitalization, while receiving the opportunity to develop protective measures to cyber-attacks.\footnote{Id.; Shamun Mahmud, Commercial & Public Sector Faces Same Cybersecurity, Cloud, and Mobile Concerns, DLT SOLUTIONS (Jan. 17, 2013), http://www.dlt.com/blog/2013/01/17/commercial-public-sector-face-cybersecurity-cloud-mobile-concerns/.} Conversely, it can be said that healthcare organizations still lack sufficient standards of protection, despite their status as lucrative targets for cybercriminals.\footnote{Health Care Industry Cybersecurity Task Force, supra note 1, at 1.} By way of illustration, the average payment for medical identity theft is ten times higher than for identity theft in other sectors.\footnote{Laurie Zabel, The Real Cost of A Data Breach, HEALTH IT OUTCOMES (June 6, 2017), https://www.healthitoutcomes.com/doc/the-real-cost-of-a-data-breach-0001 (describing that personal medical data allegedly costs around $20,000 on the black market).}

As the number of attacks on health care entities continues to rise, the lack of adequate protection makes healthcare organizations more vulnerable than other potential targets for cyber criminals.\footnote{Kelly Sheridan, Major Cyberattacks on Healthcare Grew 63% In 2016, DARK READING (Dec. 22, 2016, 2:15 PM) http://www.darkreading.com/attacks-breaches/major-cyberattacks-on-healthcare-grew-63—in-2016/d/d-id/1327779.} Cyber criminals, or “hackers,” prefer to target hospitals because they are more willing to pay ransom for the decryption of their crucial data after a cyberattack.\footnote{Igor Vuletić, Data-Driven Healthcare and Cybercrime: A Threat We Are Not Aware of?, EWA INST. FOR BIOMED. L. & ETHICS (2017), http://www.eible.org/igor-vuletic/.} Because hospitals perform sensitive activities, such attacks potentially damage not only the organization and its staff, but its patients as well.\footnote{Id.} Correspondingly, cyber attackers carry out more successful cyber-attacks against victims associated with hospital data breaches in comparison to victims in other sectors.\footnote{Id.} The rate of cyber-attacks in health care also increased because unlike other personal data limited by expiration dates, healthcare data exists in perpetuity, and resultantly may be used for numerous malicious activities such as...
identity theft, insurance fraud, health care fraud, and fraudulent tax returns.\footnote{15} In 2013, the healthcare sector reported 44% of all identity theft in the U.S.\footnote{16} In addition, the healthcare industry data breach costs are almost three times higher than in any other industry.\footnote{17}

This Article aims to draw the attention of scholars and practitioners to an important vulnerability in the healthcare sector, not only to identity theft, but also to other forms of cyber-attacks and related legal issues and challenges. To begin, this article will describe some of the most notorious cyberattacks on healthcare systems in both the European Union (“EU”) and United States (“US”). Based on this analysis, Part I will suggest phenomenology of cybercrimes against the healthcare system. Next, this Article will argue that a clear definition of phenomenology is crucial for a better understanding of this type of cybercrime. Part II of this Article will be devoted to the legal, normative aspect of the problem. To combat cybercrimes, lawyers must necessarily follow modern trends and educate themselves in the field of computer technology. Further, relevant legal provisions need to follow modern trends and provide an adequate legal framework to fight this form of crime. In addition, this Article will discuss two important legal issues regarding cybercrimes: the need for harmonization of legislation in the area of cybercrimes, and the problem of jurisdiction in the context of the health care system and patients’ privacy as protected subjects. The first problem is of a substantive nature, while the second is procedural. Both issues have a cornerstone value, since they appear to be fundamental assumptions of the effective struggle against cybercrime, a phenomenon with international element.

The main characteristic of cybercrimes is their immaterial or virtual nature, enabling perpetrators to carry out attacks from another part of the world.\footnote{18} This makes it difficult to connect a certain attack to specific place or even a specific legal order.\footnote{19} Therefore, many legal scholars point to the fact that it is important to establish unique definitions of cybercrimes in order to prevent cybercriminals from eventually avoiding criminal liability by consequence of the legal gaps and different, incongruent legal systems across.

19. Id.
In this context, this Article will discuss the scope of behaviors that should be criminalized at an international level. Particularly, this Article will emphasize relevant international documents, EU legislations (including examples of good practice from certain member states of EU), and U.S. Federal law. The dominant research method used in this Part of the Article will be the comparative method.

I. PHENOMENOLOGY OF CYBERATTACKS IN THE HEALTH CARE SECTOR

The first step to understanding the nature of cyber-attacks in the healthcare industry is to familiarize oneself with the technologies present in the modern healthcare market. For purposes of this Article, we will adopt Tschider’s classification of digital health technologies, including implanted devices, non-implanted devices, wearables, mobile apps, web applications and general administrative information technology (“IT”). It is important to differentiate between implanted and non-implanted devices. Although both types of devices can be connected to a network, non-implanted devices do not “pervasively interact with the body.” Wearables are devices that are often used in exercise, such as a Fitbit – which measures and combines different data important for exercise and health (e.g. heart rate, sleep data, calories etc.). Wearables do not have any actual physical influence on the human body. Web applications and general administrative IT also provide support to health-related activities (e.g. storage of medical data, maintaining software etc.). Tschider explains that implanted or affixed devices pose the biggest risk, since those can either “directly deliver medication or other stimulus to the human body or gather biological health information directly.”

In this Part, we will establish phenomenology of cyber-attacks in the healthcare sector. For the purposes of this Article, the term “phenomenology” should be understood in its criminological sense, as an...
empirical analysis of forms of certain criminal behavior. Phenomenology, along with etiology, forms an integrative part of modern criminology. Recently, the healthcare industry has been a target of different types of cyber-attacks. These attacks range from ransomware, which compromises the integrity of systems and privacy of patients, to computer and Internet frauds. While other industries experience these attacks as well, the nature of the healthcare industry makes these attacks even more dangerous for today’s society. This is partially due to cyber-attacks in other sectors having a predominantly financial effect, while cyber-attacks in the healthcare industry will usually have consequences that go beyond purely financial damage. For the purposes of this paper, the potential forms of cyber-attacks shall be divided in six overarching groups: 1) ransomware; 2) data breaches; 3) DDoS attacks; 4) insider threats; 5) computer fraud in healthcare sector; and 6) human malware.

A. Ransomware

One of the most common cyber-attacks in the healthcare industry is ransomware. Ransomware is a type of malware that infects systems and files, making them inaccessible until a certain amount of ransom, stipulated by the hacker, is paid by the entity. The ransom usually demands paper money, but it can also be in virtual currency, such as bitcoin. In May 2017, a global ransomware attack named “WannaCry” infected over 230,000 computers in approximately 150 countries and ransom was demanded in bitcoins. In literature, ransomware is defined as “a type of malware that uses malicious codes to intrude the system before users notice it, to encrypt

30. Id. at 4–7.
31. Etiology in sense of empirical research of causes of criminal behavior.
32. Davor Derencinovic and Anna-Maria Getos, Uvod u kriminalogiju s osnovama kaznenog prava (Zagreb: Faculty of Law, 2008), at 19, 31.
33. Barlow, supra note 15; HEALTH CARE INDUSTRY CYBERSECURITY TASK FORCE, supra note 1, at 5.
35. Barlow, supra note 15.
36. HEALTH CARE INDUSTRY CYBERSECURITY TASK FORCE, supra note 1, at 6; Cyber Attacks: In the Healthcare Sector, supra note 34.
38. Id.
40. Id.
important files, to require money using encrypted files as a hostage, and to give monetary damages to users. Essentially, ransomware may be characterized as a kind of virtual blackmail. The use of ransomware is constantly increasing, and current estimations indicate that its use will continue to increase in the future.

When ransomware happens in the healthcare industry, it slows down all critical processes and may go as far as to make them completely dysfunctional. In the healthcare industry, hackers particularly target hospitals with ransomware. When facing ransomware cyber-attacks, hospitals must switch to old, conservative methods of data storing, which correspondingly slows down the medical process and expends funds that could have been allocated to projects, research, and patient care. Ransomware attacks are more prevalent than most realize. In 2016, at least 14 hospitals across the United States experienced ransomware attacks. In these cases, hackers managed to crack out-of-date servers, which enabled them to upload malware in the system. Unusually, hackers performed this action without any participation or interaction with victims, making it dissimilar from other “physical,” or traditional crimes. A specific healthcare industry-related incidence was in 2016, when a virus called “Locky” hit Hollywood Presbyterian Hospital in California. Locky, given its namesake unsurprisingly locked out the hospital staff, which effectively obstructed their access to patients’ files, radiological imaging, and other

43. Ransomware: In the Healthcare Sector, supra note 37.
44. Id.
45. Id.
47. Id.
48. Id.
medical tests. This caused serious delays in patient care, and eventually resulted in the hospital paying $17,000, or the equivalent of 40 bitcoin, ransom to re-gain access to their data. A similar virus affected Ottawa Hospital in Ontario, Canada, where four victims activated malware by clicking on a phishing e-mail that encrypted their computer system. This example illustrates the significance of proper computer training of healthcare staff to minimize the risk of such attacks.

There are two elements to a criminal offense, actus reus and mens rea. The actus reus is the element external to the defendant’s mind, consisting of an act committed by the defendant along with certain circumstances that constitute criminal offense. The mens rea (also known as the mental element of crime) reflects the state of mind of the defendant in relation to specific actus reus. The actus reus of ransomware usually includes a certain amount of contribution from the victim as the perpetrator counts on the victim’s naivety. The victim usually activates malware by either reading emails containing a malicious attachment, clicking on a malicious link, or by viewing an advertisement containing malware. All three techniques are commonly known as “phishing,” which is the process of “obtaining computer credentials from users through manipulation or deceit.” Once stolen, computer credentials can be misused in a variety of ways, from stealing identities and selling them online in the black markets, to using them for different types of cyber frauds. Further, stolen computer credentials can be recycled and used for additional, improved cyber-attacks. What makes defense strategies more difficult in the cybercrime context is that cybercriminals continue to develop new tactics and techniques to carry out attacks, which makes it even more difficult to timely detect and prevent new

50. Sienko, supra note 46; Winton, supra note 49.
51. Sienko, supra note 46.
54. Id.
55. Id.
56. Song et al., supra note 41, at 2.
58. Wright et al., supra note 15, at 1115.
59. Id. at 1116.
60. Id.
attacks in the future. That is why it is recommended for hospitals and healthcare providers to invest in additional funding for the education and training of their personnel to recognize and avoid phishing. Unfortunately, the organizations that do not take necessary common-sense measures to preemptively prevent cyber-attacks can suffer extremely serious consequences due to access to their files and computer system in general becoming disabled. Therefore, due to the extensive damages that may follow a cyber-attack, it is pertinent that each healthcare organization should properly secure networks, systems, and patients, by continuously maintaining and updating their defense system.

B. Data breach

According to some authors, a data breach is probably the most widespread type of cyber-attack. A data breach is a “loss or theft, or other unauthorized access to sensitive personally identifiable information that could result in the potential compromise of the confidentiality or integrity of data.” This type of cybercrime activity is so prevalent that experts warn organizations to assume not that they may be victims of a data breach, but that they have already been victimized. According to the Ponemon Institute and Verizon Data Breach Investigations Report, the healthcare industry was ranked second place based on the number of data breaches per year, with only the finance industry exceeding it in the number of attacks. Breaches can occur in many different forms, such as credential-stealing malware, lost laptops, improper configuration, and overly complex access permissions, among others. The goal of cybercriminals is either to sell the protected health

61. Currently, there are eight main types of malicious software weapons, which vary in the amount of harm they can inflict. See Grebenkov & Yakovleva, supra note 57, at 6834.
62. Wright et al., supra note 15, at 1115, 1117.
63. Id.
64. Barlow, supra note 15.
information ("PHI") or to use it for their own personal gain. Certain reports even go so far as to claim that "[t]he average cost of a data breach incurred by a non-healthcare related agency, per stolen record, is $158. For healthcare agencies the cost is an average of $355." PHI is valuable because it can be used for many lucrative purposes, including creating fake insurance claims, allowing for the purchase and resale of medical equipment, or illegally gaining access to prescriptions, among others.

Another, more specific type of cyber threat related to data breach is a so-called passive cyber-attack, which focuses on stealing PHI from implanted (or implantable) medical devices ("IMDs"), such as pacemakers or implanted cardioverter defibrillators, insulin pumps, and biosensors. IMDs are particularly valuable to cybercriminals for two main reasons. First, IMDs contain sensitive healthcare data. Second, they are usually connected to the computer networks of the healthcare organizations, so they are able to provide hackers with an entry into the network system of a health organization. Therefore, it is important to provide adequate protection to IMDs against cyber-attacks.

C. DDoS Attacks

"Distributed Denial of Service," attacks, commonly known as DDoS attacks, are a technique used by cybercriminals to overwhelm a network so that it becomes inoperable. Given the interconnectedness of health systems in the United States, DDoS attacks cause significant problems for healthcare providers. Because it is almost impossible to detect a DDoS attack, DDoS is a relatively simple way for cybercriminals to infiltrate a specific network.

69. *Id.* at 15–17 (providing a discussion of malicious insiders’ motivations).
71. *Id.* at 1 (indicating that PHI can also be used to file fraudulent tax returns, open credit accounts, obtain official government-issued documents such as passports or driver’s licenses, create new identities. It is especially important to realize that unlike social security numbers, PHI never expires.).
73. *Id.* at 657.
74. *Id.*
76. *Id.*
77. *Id.*
and to map it. Network mapping is usually defined as a process used to “discover and visualize physical and virtual network connectivity via a group of interrelated tasks that facilitate the creation of a network map, including flow charts, network diagrams, topology detection and device inventories. It is geared toward the creation of visual aids and materials that can be used for a broad array of purposes, especially network maintenance.” In addition, DDoS is often used as a predecessor for other types of cyber-attacks, such as ransomware. To provide proper patient care, providers need full access to the certain healthcare organization’s network. The motives for the attacks can be quite diametrical, and may include opportunism, or social, political, ideological or financial causes related to a situation that angers the cyber-attack actors.

One example of a recent DDoS attack within the healthcare industry is the 2014 DDoS attack on Boston Children’s Hospital (“BCH”). In 2014, a group of hackers targeted BCH after the hospital recommended to state law enforcement that custody be withdrawn from a 15-year-old patient’s parents after diagnosing her with “medical child abuse”; Massachusetts law enforcement accordingly responded by admitting the patient as a ward of the state. Prior to making their recommendation, BCH physicians determined that the child’s ailment was actually a psychological disorder and that her parents were pushing for unnecessary treatments. The custody debate put BCH in the midst of this controversial case, and the members of the cyber hacking group Anonymous viewed BCH’s actions as a breach of the patient’s

80. DDoS Attacks: In the Healthcare Sector, supra note 75.
81. Id.
85. Id.
basic rights. Correspondingly, Anonymous took action by conducting DDoS attacks against the hospital's network, which resulted in a loss of Internet access for almost a week. Patients and staff were unable to use online accounts to check appointments, test results, and other case information. In the aftermath, the hospital spent more than $300,000 to compensate the damage from this attack. Based on this example, it can be inferred that the damage caused by such attacks is severe. It is therefore important for the healthcare sector to continue developing and improving protection software, as well as continuing to invest in staff member training.

D. Insider Threats

One of the major risks within healthcare organizations is the risk of victimization by insiders. This risk often results from its unforeseen occurrence in the organization, which results in negligent treatment of its security estimations. Generally, an insider or insider threat may be defined as 'the potential for an individual who has or had authorized access to an organization’s assets to use their access, either maliciously or unintentionally, to act in a way that could negatively affect the organization.'

Insiders pose a particular threat because of the legitimate access they have to an organization’s system, with knowledge of its vulnerabilities or the opportunity to obtain that knowledge. For instance, in 2016, sixty-eight percent of all network cyber-attacks on healthcare organizations throughout the world were carried out by insiders. According to the National Cybersecurity and Communications Integration Center’s Report, individuals that exhibit certain characteristics (such as introversion, greed or financial

86. Miliard, supra note 84. The FBI managed to arrest members of this hacking group.
87. Id.
88. DDoS Attacks: In the Healthcare Sector, supra note 75.
89. Id.
90. Combating the Insider Threat. NAT’L CYBERSECURITY AND COMMUNICATIONS INTEGRATION CENTER (May 2, 2014), https://www.us-cert.gov/sites/default/files/publications/Combating%20Insider%20Threat.pdf. For the purpose of this article, the term insider is used in a sense of a current or former employee, contractor, or other business partner who has or had authorized access to organization’s network system.
94. Id.
need, ethical flexibility, narcissism, intolerance to criticism, lack of empathy etc.) are more likely to carry out insider attacks. It is therefore important for the healthcare sector to establish more efficient ways of screening employees through frequent psychological tests.

Insider threats come in two possible forms. The first is the malicious insider, where there is an insider attack. A malicious insider is an insider who is “a current or former employee, contractor, or other business partner who has or had authorized access to an organization’s network, system, or data and intentionally misused that access to negatively affect the confidentiality, integrity, or availability of the organization’s information or information systems.” In 2016, malicious insiders caused at least one third of the insider incidents. One such case recently occurred in Texas at the Carell Clinic Hospital, where a hospital employee built a botnet (botnet is a string of connected computers coordinated together to perform a task) and subsequently used the hospital network to attack rival hacking groups. The employee was discovered after he posted a YouTube clip of himself staging an infiltration of the hospital network. The video clearly shows the hospital’s night security guard, later identified as Jesse William McGraw, aka “Ghost Exodus,” the former leader of an anarchistic hacking group called the Electronic Tribulation Army, using a specific key (a cyber key as a smart key used as a gatekeeper for the hospital’s network system) to infiltrate the

95. Combating the Insider Threat, supra note 90, at 1.
96. Id. at 1.
97. Id.
99. Malware 101: What is a Botnet?, SYMANTEC CORPORATION (2017), https://us.norton.com/internetsecurity-malware-what-is-a-botnet.html; Botnet, DDoSPEDIA (2018), https://security.radware.com/ddos-knowledge-center/ddospedia/botnet/. Botnet might be legal, but in many cases it is a collection of compromised computers often referred to as “zombies” infected with malware that allows an attacker to control them. Botnet owners or “herders” are able to control the machines in their botnet by means of a covert channel such as IRC (Internet Relay Chat), issuing commands to perform malicious activities such as distributed denial-of-service (DDoS) attacks, sending spam mail, and information theft.
The investigation revealed that McGraw infected dozens of machines that contained sensitive patient records with malware, and installed a backdoor in the heating, ventilation, and air conditioning unit, which, if failed, would cause damage to drugs and medicines and affect hospital patients during the hot Texas summer. McGraw pled guilty to computer tampering charges and was sentenced to 9 years and 2 months in prison. In addition, he was ordered to pay $31,881 in restitution and serve three years of supervised release following his prison term.

The second type of insider threat is from inadvertent insiders, whose reckless acts enable intruders to gain access to PHI. One of the most frequent forms of inadvertent insider attacks is when an insider loses an unencrypted password-protected laptop. It is unsurprising that the rate of such reported loss in the healthcare sector is much higher than in other sectors. Namely, the healthcare sector invests less funds in IT education of employees than other sectors targeted by cyber criminals. Recently, there was a report of personal information of children vaccinated at Chinese hospitals being illegally obtained, partly thanks to the recklessness of insiders in misplacing their laptops. This attack compromised the personal information of over 200,000 children in East China’s Shandong Province of Jinan, including cellphone numbers and home addresses. These data could...

103. Poulsen, supra note 100.
105. Id.
106. The Billion Dollar Lost Laptop Problem, INTELLIGENCE IN SOFTWARE, http://www.intelligenceinsoftware.com/it_software_strategy/lost_laptop/index.php (last visited May 22, 2018) (For the purpose of this paper, an unintentional insider threat is a current or former employee, contractor, or business partner who has or had authorized access to an organization’s network, system, or data and who, through action or inaction without malicious intent, causes harm or substantially increases the probability of future serious harm to the confidentiality, integrity, or availability of the organization’s information or information systems); see also Costa, supra note 92.
107. The Billion Dollar Lost Laptop Problem, supra note 106.
108. Id.
109. Id.
110. L. Ruohan, Info of 200,000 Babies Leaked, Causes Panic Among Parents, GLOBAL TIMES (Apr. 8, 2016), globaltimes.cn/content/977702.shtml.
111. Id.
be used by organized criminal groups for baby-kidnapping for human trafficking purposes.¹¹ This example illustrates that China has the same problem as the U.S. – a lack of adequate supervision on the protection of personal information in healthcare sector.

One reason for such a high rate of incidents caused by careless insiders is the lack of adequate security education.¹² One 2016 report identified employees in healthcare systems as one of the lowest performing groups on basic cybersecurity evaluations, such as safe password practices.¹³ The best way to prevent an insider’s threat is to train employees on how to recognize and report the insider threat. Therefore, it is worth considering prescribing mandatory insider threat awareness training to employees before being granted access to classified information. Such training would involve both methods and training on how to avoid, report, and prevent such attacks. In addition, employers should establish and maintain a record of all cleared employees who have completed the training.

E. Computer Fraud

Computer fraud is the oldest and one of the most frequent forms of cybercrime.¹⁴ Due to the global nature of the Internet, the number of computer frauds is in constant growth and causes large material consequences to the victims.¹⁵ Therefore, this form of cybercrime is often featured in international conventions on cybercrime and regulatory instruments; in addition, it has also become a part of criminal codes in many countries in the last couple of years, especially within the EU.¹⁶ The terms “computer fraud” or “cyber fraud” are usually understood in two ways: direct and indirect.¹⁷ By direct computer fraud, one implies deceitfulness of the person using a computer system as a medium.¹⁸ Here, the person is the

¹² Id.
¹³ Id.
¹⁴ Id.
¹⁵ Id.
¹⁶ Id.
¹⁷ Id.
object of fraud. Indirect computer fraud, on the other hand, implies that the hacker is deceiving the computer system. In that case, it is the system itself, rather than the human being that is the object of fraud.

One of the most frequent forms of computer fraud is carried out via e-mail. Estimates indicate that an Internet user who holds an e-mail address has received at least one e-mail asking for data about their bank account, social security number, or other personal data. This criminal offense is usually connected with more than one state, which causes problems with jurisdiction and ius puniendi. In literature, this type of fraud is also known by the name of “Nigerian scam” or “Scam 419,” and is referred to by the Federal Bureau of Investigation (“FBI”) as the “Billion Dollar Scam.” In this type of scam, a hacker sends an e-mail with a false promise that the user will receive a certain amount of money if he or she gives the hacker his or her bank account or social security number. The data is then used illegally. While it sounds naive, it is a very lucrative business for hackers since one person in 10,000 sends the required data back.

F. Human malware

While it now seems like science fiction, there is a real possibility that humans could be infected with malware in the near future. Presently, hackers are able to access IMDs in order to gain valuable data or to enter the network systems of health organizations. However, some scientists claim that, by accessing IMDs, hackers are also able to cause physical harm to the human body. It is scientifically proven that it is possible for a capable hacker to break into a human implant and input a virus that will cause the implant to stop running properly. Indirectly, this could cause deterioration of the disease or even death. In such a case, it is questionable whether the

120. Id.
121. Id.
122. Id.
123. Id. at 988.
124. Id.
125. See infra, Part II.
127. Hartikainen, supra note 126.
128. Id.
129. Šépec, supra note 118, at 988.
130. Browning & Tuma, supra note 72, at 657.
131. Id. at 657.
132. Id. at 638.
133. Id. at 644.
134. Id. at 647.
hacker could be tried for murder due to the definition of the crime and causality among other factors.135 Additionally, new research found it possible to spread computer viruses via wireless Internet routers,136 resulting in infected wireless Internet routers that can pose serious, long-term health or life risks to implant patients, due to the possibility that any compromised wireless Internet network could be used to spread medical viruses to patients.137

II. LEGAL ISSUES

In general, due to its specific and virtual nature, cybercrime opens many unsolved legal issues.138 These issues concern multiple branches of law, relating to substantive (e.g. sentencing and punishment, \textit{actus reus} and \textit{mens rea} etc.) and procedural aspects of law (e.g. conflict of jurisdictions), and evidence law.139 It is likely that cybercrime will become more prevalent because it offers multiple advantages in comparison to traditional forms of crime.140 Scholars point out that cyberspace provides the guarantee of anonymity, enables criminals to target thousands of victims at the same time, and lets automated systems carry out the actual illegal activities.141 It is questionable whether traditional legal frameworks across the globe are sufficient to fight back.142 There are four main problems as to why traditional criminal law is not able to respond adequately: 1) the quest for unique definition of particular cybercrimes, 2) the lack of adequate computer education of lawyers in this field, 3) the conflict of jurisdictions, and 4) the problems related to the virtual nature of evidence material.143 The most important of the aforementioned reasons is the potential conflict of jurisdictions, which could be an aggravating factor each time international cyber-attacks occur.144 This section will only focus on this issue, and is divided into two subsections. The first section will discuss the issues connected with jurisdiction. The second will address the differences between national substantive criminal laws and the need for harmonization.

\begin{itemize}
 \item 135 Id. at 670
 \item 136 See e.g. Johnny Milliken, et al., \textit{Detection and analysis of the Chameleon WiFi access point virus}, 2 EURASIP J. ON INFO. SEC. 1, 2 (2013).
 \item 137 Id. at 7.
 \item 138 See Ulrich Sieber, et al., \textit{Europäisches Strafrecht} § 24, 1 (Baden-Baden: Nomos 2011).
 \item 139 Id.
 \item 140 Id.
 \item 141 Brenner, supra note 3, at 194.
 \item 142 Francesco Calderoni, \textit{The European Framework on Cybercrime: Striving for an Effective Implementation}, 54 CRIME LAW SOC. CHANGE 339, 339 (2010).
 \item 143 Id. at 340–41.
 \item 144 Id. at 342.
\end{itemize}
A. Establishing Jurisdiction for Cybercrimes

Jurisdiction is a main assumption to start proceedings against the defendant who committed certain criminal act. Generally, jurisdiction is defined as a “government’s general power to exercise authority over persons and things.”144 Criminal law predominantly establishes jurisdiction based on territorial nexus with the criminal offense, the perpetrator and the victim.145 However, jurisdictional issues tend to be more complicated in situations with international elements.146

International elements exist in any cyber-attack that targets more than one country.147 Such attacks are also known as “transnational” cybercrimes.148 Transnational cybercrime exists if either perpetrators act from territories of different countries or their targets are situated in more than one country, or both.149 The virtual character of transnational cybercrimes makes it possible for the crimes’ consequences to affect several countries.150 At the same time, it is difficult (if not impossible) to determine the location of the attacker, or more frequently, attackers.151 By way of illustration, imagine a ransomware virus cyber-attack, committed by the organized group of hackers located in Nigeria, Ukraine and Serbia, against several hospitals in the United Kingdom, the United States, Australia, Canada and United Arab Emirates (“U.A.E.”). This type of cyber-attack operation can have different consequences on jurisdiction.152 First, jurisdiction could be completely lacking if none of the involved countries is able to assert jurisdiction.153 Second, jurisdiction could exist, but at the same time, it could be impossible to assert due to the specific factual problems (e.g., problems with extradition of the perpetrator).154 Third, the so-called positive conflict of jurisdictions could arise if more than one country claims their right to jurisdiction, or negative if none of them want to engage.155 In combination, these factors and complications could eventually lead to the undesirable outcome of allowing the perpetrator to avoid criminal liability.156 This legal gap enables organized cybercriminals to develop strategies and to intentionally operate from those

146. Brenner, supra note 3, at 192.
147. Id. at 194.
148. Id.
149. Id.
150. Id. at 194–95.
151. Id. at 194.
152. Id.
153. Id. at 190.
154. Id.
155. Id.
156. Id. at 197.
157. Id.
parts of the world that do not have adequate legal framework regarding criminal jurisdiction.158

How do we prevent such a scenario? International treaties dealing with the problem of jurisdiction add almost nothing essential to the solution. The Council of Europe’s Convention on Cybercrime addresses the problem by proclaiming that if there is a positive conflict of jurisdictions, that “the Parties involved shall . . . consult . . . to determin[e] the most appropriate jurisdiction.”159 The United Nations Convention against Transnational Organized Crime contains an almost identical provision.160 Different national systems approach this problem in various ways. States vary from expansive approaches, that allow jurisdictions to include the right of the state to prosecute even if the digital signal is only passing through their territory, to a narrower approach that always requires nexus with either the perpetrator, the victim, the actual place of the crime or occurrence of consequences.161 The main difference between these two approaches is that the expansive approach enables more countries to establish jurisdiction.162

One solution would be to re-define the principle of “universal” jurisdiction so that it covers cases of contemporary cybercrimes with international elements, at least in cases with far-reaching consequences (see Table 1). The principle of universal jurisdiction was designed to give sovereignty to each state in the world, regardless of the existence of a nexus with its territory or citizenship of the perpetrator or the victim.163 The purpose of such principle is to establish international solidarity between states and to prevent certain areas in the world from becoming shelters for international criminals. The principle of universal jurisdiction in modern law has two interpretations: narrow and wide.164 In a narrow sense, colloquially known as the “World’s law” principle or in German as “Weltsrechtsprinzip”, it refers to the right of each state to prosecute crimes against basic values of international community (e.g., war crimes, genocide, crimes against humanity etc.). In a wide sense, universal jurisdiction applies to all criminal offenses of a certain

158. See generally id.
162. Id.
164. Id. at 30.
165. Id. at 9.
166. Id. at 7.
In both cases, if the universal jurisdiction rule is applicable, the state can prosecute independently of the fact that the commission of the crime does not have any nexus with that concrete state. However, the condition *sine qua non* is that the perpetrator is reachable; in other words: there is no possibility of *in absentia* trials.

Table 1 shows the results of this research on eleven randomly selected countries, concerning the scope of universal jurisdiction and its applicability on potential cybercrime attacks against the healthcare organizations anywhere in the world. The research illustrates that only a minority of countries are able to prosecute cybercrimes based on universal jurisdiction, which *a contrario* means that all of them are suitable to become “shelters” for organized hacking groups.

Table 1: Applicability of Universal Jurisdiction Principles on Cybercrimes (An Overview of 11 Countries)

<table>
<thead>
<tr>
<th>State</th>
<th>The scope of Universal Jurisdiction</th>
<th>Applicability to Cybercrimes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albania</td>
<td>International crimes and other crimes under special treaties</td>
<td>No</td>
</tr>
<tr>
<td>Armenia</td>
<td>Crimes provided in special treaties</td>
<td>No</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>International crimes and other crimes under special treaties</td>
<td>No</td>
</tr>
<tr>
<td>Canada</td>
<td>International crimes</td>
<td>No</td>
</tr>
<tr>
<td>Croatia</td>
<td>International crimes and other crimes punishable by 5 years or more</td>
<td>Yes, but only for the most severe forms.</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>All crimes that are regulated as criminal offenses in crimes where they were committed, if the perpetrator is present in CR</td>
<td>Yes.</td>
</tr>
</tbody>
</table>

167. *Id.*
168. *Id.* at 8.
169. *Id.* at 10–11.
170. For purposes of this article, the authors have conducted research of relevant universal jurisdictional provisions in criminal codes of enlisted countries. The results of the research is pooled toghether to create the table in order to achieve clarity.
<table>
<thead>
<tr>
<th>Country</th>
<th>Crimes Penalized</th>
<th>Conditions</th>
<th>Jurisdiction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denmark</td>
<td>All crimes penalized under D. Law with prison sentence over one year</td>
<td>Yes, but only for the most severe forms.</td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>All crimes penalized under F. Law with prison sentence over six months</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>Macedonia</td>
<td>International crimes and other crimes punishable by 5 years or more</td>
<td>Yes, but only for the most severe forms.</td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td>Crimes provided in special treaties</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Ukraine</td>
<td>Crimes provided in special treaties</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Finally, the international community should consider amending the jurisdiction of the International Criminal Court (“ICC”) for cases of organized cybercrimes when their commission causes severe damage with global consequences. ICC is the first independent and permanent international tribunal, established with a purpose of prosecuting international crime that are difficult (or impossible) to prosecute before domestic courts and that could have global consequences.\(^{171}\) The international community has interests that such crimes are prosecuted and their perpetrators are punished by the law.\(^{172}\) Organized attacks on healthcare organizations, committed simultaneously against several hospitals in different countries (as it was the case in WannaCry) would surely constitute such a crime. That way, the international community would have an efficient way of overstepping the boundaries set by the lack of adequate universal jurisdiction rules in national systems of criminal law.

B. Harmonization of National Substantive Criminal Laws

Even if a state can assert jurisdiction, it is not in a position to actually try the perpetrator due to the lack of an adequate legal framework at the substantive level.\(^{173}\) Namely, one of the basic principles of criminal and constitutional law is legality (also known as *nullum crimen sine lege, nulla

171. Id. at 21.
172. Id.
In countries that adopt civil law tradition (i.e., "continental" law systems), the principle of legality is the cornerstone of a defendant’s rights when facing criminal charges. As one of the most precious legacies of enlightenment philosophy, the nullum crimen principle requires the state not to prosecute if its legislative framework lacks clarity regarding the elements or penalty of a certain crime. If certain behavior was not foreseen as a criminal offense before it was committed, a person could not be held liable for it. If the court spots this kind of legislative "gap," it will not be authorized to fill it with analogy, otherwise it would breach this basic principle of criminal law, nullum crimen sine lege stricta.

For example, one cannot talk about the hypothetical crime of theft or robbery in a case where A and B forced C to "hand over" a virtual sword in an online computer game, in which the sword had a value of $800. Those crimes are traditionally connected with the existence of a materialized object, which is not the case if one deals with a virtual sword. Accordingly, to prosecute such virtual behaviors as a crime, certain states would have to have a specialized type of virtual theft or robbery. The opposite solution would lead to the unarguable conclusion that the defendant’s rights were breached, and it would offer him or her the basis for a claim against the state. The applicant could to address the European Court of Human Rights in Strasbourg and claim the breach of Article 7 of the Convention, that prohibits the retroactive criminalization of acts and omissions and proscribes that no person may be punished for an act that was not a criminal offense at the time of its commission. Further, similar cases can be found in comparative practice. The Belgian Constitutional Court established the breach of the principle of equality when a Belgian legislator incriminated cyber-stalking as a special offense, but at the same time predicted a higher sentence than for general crime of stalking.

In some countries, criminal codes still do not incriminate offenses such as...
cyber fraud, cyber bullying, and ransomware. Thus, it is necessary for the states to harmonize their criminal legislation with international standards. For example, Slovenian Criminal Code provisions regarding computer fraud are still not harmonized with the Convention on Cybercrime. This, in turn, forces Slovenian Courts to fill in the gap with the forbidden analogy, as discussed supra. In one such case, a perpetrator was convicted for (regular) theft for unauthorized access to a bank computer system when he used an ATM to enter the system and cause financial damage. The High Court in Ljubljana rejected the idea of fraud since the latter, according to Slovenian law, can only be committed against a real person, and not against a computer system. Resultantly, the High Court convicted the perpetrator for theft, and based the conviction on a broad interpretation of the term “breaking and entering.” In its opinion, the High Court stated that an ATM is nothing else but an official space of the bank, and that entering the ATM system is the same as entering the bank. The Supreme Court of Slovenia affirmed that opinion in several other cases. Similar jurisprudence also occurred in Slovenia’s neighboring country of Croatia prior to amendments of the Croatian Criminal Code that introduced computer fraud as a self-standing criminal offense. Although the above-mentioned cases do not refer to healthcare organizations as targets, they have illustrative value for this subject since they show the trouble that courts face when dealing with insufficient legislative frameworks.

Therefore, it is justified to conclude that the main assumption for the efficient struggle against cybercrime is a harmonization of incriminations regarding this conduct. There is a universal need for consensus on what should be criminalized and to what extent. In addition, there are varying

186. Also known as the Budapest Convention. Šepec, supra note 118, at 987.
187. Id. at 993.
188. Id.
189. Id. at 994.
190. Id.
191. Id.
192. Id.
193. Id.
degrees of understanding of the scope and the limits of cybercrimes. Some types of activities are broadly recognized, but there are still several areas in which there is a lack of consensus. This issue exists at both the regional and supranational level. It seems that there is certain reluctance towards criminal law, since it is broadly understood as ultima ratio societas. The Council of Europe’s Convention on Cybercrime in 2001 prescribes minimum incriminations that each member state should adopt to effectively face the problem of cybercrime. Those crimes cover behaviors such as illegal access to a computer’s data or network, interference in computer system, illegal interception of computer system or data, computer forgery and fraud.

CLOSING REMARKS

There is no doubt that big data improved the healthcare industry in many ways. Faced with the unsustainable costs of underutilized data management, the industry has long looked for more efficient solutions. Therefore, it is unsurprising that healthcare systems in the U.S. and worldwide are rapidly adopting electronic healthcare records. However, there is another, darker and more dangerous side: this new process makes patients personal data facilely accessible. Healthcare databases contain massive amounts of private patient information, some of which even contains financial background information (e.g., patients’ social security numbers, data about payment of certain medical services, etc.). Taken together, all of these factors make the entire healthcare industry an attractive target for cybercriminals.

The intention of this Article was to provoke a discussion on an emerging, but not yet sufficiently recognized type of cybercrime that is targeted against healthcare organizations and the healthcare industry in general. This type of cybercrime has been steadily on the rise due to several factors including the increased vulnerability of healthcare sector and the very specific legal issues (jurisdictional problems and differences in legal regulation between different legal systems in the world) that aggravate efficient criminal proceedings. Above all, cybercrime is a very lucrative endeavor, since PHI has a higher black-market value than other types of data. Moreover, PHI has a permanent

195. Id. at 50.
196. Id. at 49.
197. Id. at 54.
199. Id.
200. Some legislations decide to provide additional protection to patients’ privacy by enforcing specific laws. One example of good practice is Health Insurance Portability and Accountability Act of 1996 (or HIPAA), a United States legislation that provides data privacy and security provisions for safeguarding medical information.
character, is not time-limited by expiration dates, and it can be used for different purposes. The other reason for the growing popularity of the healthcare industry as a target among hackers and cyber gangs is the fact that health organizations (especially hospitals) are not yet up to date with modern standards of protection. Other industries have been targets of cyber-attacks for many years and have had enough time and energy to develop higher standards of protection. However, healthcare organizations have not yet had sufficient time and organizational skills to improve their security systems. The third reason for the growing trend of attacks in the healthcare industry is the basic nature of its activity: since healthcare organizations perform sensitive processes that often involve critically ill patients, they are unable to simply stop their activities. Thus, healthcare organizations are more willing to pay a ransom than other sectors. All these factors make the healthcare sector a more vulnerable target than the other sectors, which is why this problem should be one of the top priorities in further improvements and analysis in this sector.

The phenomenology of cyber-attacks is a living tissue, and it is constantly developing. Based on known attacks, this article described six possible modalities of cyber-attacks in health care, supported by examples from recent practice. These cyber-attacks cause great financial damage to their victims, can have a broad scope of other consequences, and due to their immaterial, virtual nature, are often difficult to trace and to prove. Criminal prosecutors who deal with this type of crime often face insurmountable obstacles in conflicts of jurisdiction, lack of adequate computer knowledge and infrastructure, and the absence of criminal legislation that would even criminalize different types of cybercrime. Therefore, this Article also focused on the legal dimension of the problem and suggested a minimum of the offenses, which every country should adopt as soon as possible. If this is accomplished, states can prevent themselves from becoming a safe zone for cybercriminals and hackers who misuse their capabilities.

While cybercrime and cyberterrorism are becoming one of the greatest threats in modern criminal law, there are still many questions that remain unanswered. We hope that this Article will inspire further legal debates on this very sensitive and practically important topic.